Carbon Nanotube Yarn Actuators: An Electrochemical Impedance Model

نویسندگان

  • Tissaphern Mirfakhrai
  • Jiyoung Oh
  • Mikhail Kozlov
  • Shaoli Fang
  • Mei Zhang
  • Ray H. Baughman
  • John D. W. Madden
چکیده

Twist-spun yarns made of carbon nanotubes have been shown to work as electrochemical actuators and force sensors. The electrochemical response of these yarns at different bias potentials was studied using electrochemical impedance spectroscopy EIS and compared with results from cyclic voltammetry. Based on the EIS results, the capacitance is estimated first by directly fitting a resistance–capacitance circuit and then by fitting a circuit including a constant phase element CPE , estimating the capacitance based on the CPE. The gravimetric capacitance in aqueous electrolyte is found to be about 12 F/g and relatively independent of bias, while in an acetonitrile-based electrolyte it is a function of the bias potential, increasing to nearly 20 F/g when the bias potential is larger. The capacitance per unit surface area of the multiwalled nanotubes bundles in the yarn is estimated to be about 0.05 F/m2. © 2009 The Electrochemical Society. DOI: 10.1149/1.3106048 All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probe Sensor Using Nanostructured Multi-Walled Carbon Nanotube Yarn for Selective and Sensitive Detection of Dopamine

The demands for electrochemical sensor materials with high strength and durability in physiological conditions continue to grow and novel approaches are being enabled by the advent of new electromaterials and novel fabrication technologies. Herein, we demonstrate a probe-style electrochemical sensor using highly flexible and conductive multi-walled carbon nanotubes (MWNT) yarns. The MWNT yarn-b...

متن کامل

Electrochemical activation of carbon nanotube/polymer composites.

Electrochemical activation of carbon nanotube/polysulfone composite electrodes for enhanced heterogeneous electron transfer is studied. The physicochemical insight into the electrochemical activation of carbon nanotube/polymer composites was provided by transmission electron microscopy, Raman spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Dopamine, ascorbic acid, ...

متن کامل

Development of Single Walled Carbon Nanotube-Molybdenum Disulfide Nanocomposite/poly-ethylene Glycol Modified Carbon Paste Electrode as an Electrochemical Sensor for the Investigation of Sulfadiazine in Biological Samples

A rapid electrochemical analysis of sulfadiazine (SFZ) has been carried out by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods by employing a sensitive single walled carbon nanotube-molybdenum disulfide nanocomposite/poly ethylene glycol modified carbon paste electrode (SWCNT-MoS2/PEG/CPE). The SFZ shows anodic peak potential at 0.94 V (vs. Ag/AgCl) in 0.1 M PBS of pH 7...

متن کامل

Electrochemical impedance measurement of prostate cancer cells using carbon nanotube array electrodes in a microfluidic channel.

Highly aligned multi-wall carbon nanotubes were synthesized in the shape of towers and embedded into fluidic channels as electrodes for impedance measurement of LNCaP human prostate cancer cells. Tower electrodes up to 8 mm high were grown and easily peeled off a silicon substrate. The nanotube electrodes were then successfully soldered onto patterned printed circuit boards and cast into epoxy ...

متن کامل

2010: Structure and Process Dependent Properties of Solid-State Spun Carbon Nanotube Yarns

Introduction We have previously reported downsizing ancient twistbased spinning technology for making continuous, densified nanotube yarns from multi-walled carbon nanotube (MWNT) forests [1]. Such nanotube yarns provide unique properties and property combinations. Despite this important progress, the relationship between nanotube yarn properties and component carbon nanotube properties is not ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009